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Abstract

Gradient based meta-learning has established it-
self as a promising research direction for prob-
lems in few-shot learning: data-constrained train-
ing on an ensemble of tasks with quick adapta-
tion on a task, unseen during training. Until re-
cently, little has been known about the success of
model-agnostic meta-learners (MAMLs), which
are particularly useful to few shot learning. We
shed light on the phenomenon of feature reuse in
MAMLs through empirical visualizations of the
loss landscapes of a variety of tasks. We develop
meta-visualization: an efficient framework for vi-
sualization of any gradient based meta learning
algorithm that can be used to generate hypothe-
ses and guide model designs. The contributions
of our work vary from augmenting research in
the field of meta learning to explaining the suc-
cess of the method through geometrical lens. Our
code is available at https://github.com/
kristian—-georgiev/867-Project.

1. Introduction

MAMLs. Model-agnostic meta-learning has been a flour-
ishing field of research (Finn et al., 2017; Finn, 2018). De-
spite not yielding the state of the art on few-shot learning
tasks, the universality of MAMLSs makes them an appealing
choice to a plethora of applications: from continual and
few-shot classification, through regression, to reinforcement
learning. MAML falls under the category of gradient based
meta-learning (Lopez-Paz & Ranzato, 2017; Finn et al.,
2017) and consists of two optimization loops. An outer loop
finds a good initialization, named meta-initialization, and
an inner loop can efficiently learn the new task.

Feature reuse. The question about the effectiveness of
MAML compares two hypotheses: (i) rapid learning, the
meta-initialization allows for quick adaptation to new tasks;
(i) feature reuse, the meta-initialization is already trans-
ferable enough, so the feature extracting part of the net-
work does not evolve significantly. Recently, empirical
findings suggest that feature reuse is the dominating hypoth-
esis (Raghu et al., 2019). To validate the findings, Raghu
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et al. provide a new algorithm which does not optimize the
feature extracting part of the neural network in the inner
loop. Revealing the tension between rapid learning and
feature reuse for a general set of meta-learning algorithms
and few-shot classification tasks would be of seminal con-
tribution to the field, as it would provide an understanding
of how MAML works.

Main problem. Similarly, in attempt to understand how
MAML works, we now ask: How does the trajectory of the
weights on the loss landscape behave during meta-learning
across all tasks? Can we observe the phenomena of rapid
learning and feature reuse in the geometry of the trajectory
on the loss landscapes? Here we attempt to answer these
questions.

Approach. Inspired by visual analysis of loss landscapes
of neural networks (Li et al., 2018), we approach our main
problem by developing a visualization technique for meta-
learing algorithms, which we name meta-initialization. The
objective of meta-initialization is plot the outer loss, i.e. the
loss on the query set after adaptation on the support set.

Our contributions can be summarized as follows:

1. We develop a framework for visualizing the loss land-
scape of meta-learning algorithms;

2. Through our visualizations we validate the empirical
gains of MAML vs standard joint training;

3. We analyze our visualizations from meta-learning and
propose methods of probing the phenomena of rapid
learning and feature reuse;

4. We publish our code in order to aid research on meta-
learning.

The rest of this paper is organized as follows: In Section 2
we discuss related work. In Section 3 we explain the experi-
mental setup in this paper. In Section 4 we elaborate on our
main contribution of meta-visualization. In Section 5 we
present our main results. In Section 6 we discuss interpre-
tation of our results. In Section 7 we conclude and suggest
promising directions of future work.
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2. Related work
2.1. How to optimize MAMLs

Antoniou et al. (2019) provides good practices for train-
ing MAML models and in particular suggests that special
care needs to be taken with batch normalization (Ioffe &
Szegedy, 2015). In our work, to isolate the effect of inner
and outer loop optimization, we do not use batch normal-
ization in our architectures. Albeit this architecture choice
reduces the accuracy of our models it provides a cleaner
analysis. Fallah et al. (2019) prove convergence guarantees
for MAML and first order MAML in nonconvex settings
and also give insights on how to construct optimal MAMLs.
Rajeswaran et al. (2019) suggest optimizing MAMLs in
memory and time complexity through efficient methods of
computing implicit meta-gradients. In contrast, our work
takes a more empirical approach, by visualizing the per-
formance of MAMLs on the loss landscape and inferring
efficient optimizations from the visualziations.

2.2. How to understand MAMLs

Nichol et al. (2018) provides a Taylor series analysis to
demonstrate that at first order, MAML optimizes not only for
a join training objective, but also for an objective that max-
imizes the inner product between gradient updates across
tasks: the latter objective suggesting a setting where transfer
across tasks is achieved. Riemer et al. (2019) extend the
applications of that analysis. Raghu et al. (2019) demon-
strates empirically that feature reuse seems to be dominating
rapid learning. Neither of these works have explored the
geometry of loss landscapes of MAMLSs empirically, which
is our main objective in this paper.

2.3. Visualization of neural networks’ loss landscapes.

Our approach is most similar to (Li et al., 2018) who pro-
vide an empirical study of visualization of loss landscapes,
building on insights obtained from a history of works on
optimizing the loss landscape of neural networks (Blum &
Rivest, 1988; Zhang et al., 2017). The authors propose a vi-
sualization technique that allows them to study the structure
of neural loss functions and from there to infer generaliza-
tion properties. In a similar fashion, we visualize the neural
loss landscape with the objective to understand the success
of MAMLs. However, visualizing the neural loss function
of MAMLs is not straightforward, thus we have to solve a
series of challenges with we discuss in Section 4.

3. Experimental setup

3.1. Preliminaries

With mathcal notation we denote labeled datasets of the
form D = {(x,y)}, where x is an input tensor and y is

a label. With superscripts we denote the task and with

subscript we denote the index of a batch, e.g. Si(t) is the i-th
batch for the support set of task ¢.

3.2. Few-shot learning.

Our experiments specify the framework of few-shot learn-
ing (Vinyals et al., 2016b; Santoro et al., 2016; Ravi &
Larochelle, 2017). We focus on N-way/ K -shot classifica-
tion, meaning that the model sees only K examples from
a task, consisting of /N randomly samples classes, before
making a prediction. In our work we focus on N = 5
and K = 5, i.e. all of our experiments are 5-way/ 5-shot
classification.

Support set Following our discussion above, for a task
t, its support set S; consists of N K examples, i.e. 5S-way/
5-shot gives 25 examples. The few-shot task is to train on
S; and evaluate the accuracy of a query set as follows.

Query set Analogously to S; we denote the guery set as
Q;. The number of examples in Q; is N K , where K is the
number of examples of a given class on which we want to
test. We set K = 15 across all experiments, i.e. 5-way/
5-shot gives 75 examples in Q.

3.3. Algorithms for optimization

We analyze three natural and well-established algorithms
for few-shot learning.

1. SGD. Suppose we want to train jointly on many tasks.
A natural setting would be to follow this proceduce:
starting from weights 6, sample a minibatch D; for a
task . Compute the loss on D, and update the parame-
ters 6. Then sample again and repeat the process. We
call this single loop optimization SGD since

2. MAML (Finn et al., 2017) offers an alternative to the
single loop by breaking the optimization process into
two loops as follows. We define a meta-batch to be a
collection M := {(S;, Q;) }+ of pairs of support and
query sets for tasks ¢. Then, starting from weights 6,
which we call slow weights, we enter:

Inner loop Separately, for each task ¢ represented in
M perform N gradient updates on 6 using S;, thereby
adapting on the support set, and arrive at weights ¢,
which we call fast weights.

Outer loop Update the slow weights 0 using the av-
erage of the losses of the query sets Q; at ¢;.
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Figure 1. Examples from the class “clock” in Quickdraw.

3.4. Datasets

We base our experiments on three standard datasets for few
shot classification.

Omniglot. This dataset is a standard benchmark for few-
shot learning. The dataset includes 1623 handwritten char-
acters from 50 different alphabets. Each character has 20
examples in the datset. Each example is a grayscale 28x28
image. Following (Finn et al., 2017) we use the 1200 classes
for training and 423 classes for testing.

Improvements on 5-way/ 5-shot Omniglot have been satu-
rated, all achieving almost perfect accuracy. This necessi-
tates more challenging benchmark datasets.

QuickDraw. This dataset has recently been introduced as
a novel benchmark for meta-learning (Triantafillou et al.,
2019). It consists of 50 million drawings consisting of 345
classes. We select 300 classes for training and 45 classes
for testing.

Note that this dataset is significantly more challenging than
Omniglot. Figure 1 demonstrates that there is a lot of vari-
ability within the class “clock,” a phenomenon, characteris-
tic for across all classes in Quickdraw. Therefore, we expect
lower accuracy for Quickdraw than for Omniglot.

For Quickdraw the neural networks suffers more acutely
from the covariance shift problem, because of the high vari-
ability within classes.

Constructing the tasks. In order to construct the tasks
for the 5-way/ 5-shot experiments we sample 5 classes at
random respecitvely from the train and test sets and for the
5 chosen classes we sample 20 random examples. Then we
split the 20 random examples in 5 examples for the inner
loop and 15 for the outer loop optimization. Thus we obtain
an inner loop batch of 25 examples an outer loop batch of
75 examples for each tasks. Each meta-batch consists of 32
tasks, and we have 37 meta-batches in total for each dataset.

3.5. Models, additional hyperparameters and
implementation

Model. Our model is a neural network NN that is a com-
position of a feature extractor F and a classification head H,
i.e. NN = H o F. The feature extractor F consist of three
layers of 2D convolutions with zero padding, stride one, and
kernel size three, and [input, output] channels as follows: [1,

64], [64, 64], [64, 64]. After each convolution we use 2D
batch normalization with momentum 1.0 (Ioffe & Szegedy,
2015), then ReLU activations, followed by 2D max pooling
with kernel size two. Since we start with 28x28 images the
resulting 64 neurons from the feature extractor are inputs
to the head H, which is a linear layers with N = 5 output
neurons and a softmax activation to model the predictions
of NN.

Hyperparameters. We train each model for 50 epochs.
We use Adam (Kingma & Ba, 2015) optimizer with learn-
ing rate le-3 for the outer loop and a Stochastic Gradient
Descent optimizer with learning rate le-1 for the inner loop.
We perform N = 5 adapting steps in the inner loop.

Implementation. Our code is unique because it combines
the Higher library! with differentiable optimizers, data load-
ers from Learn2Learn® (which we hope to integrate with
Meta-Dataset®) and our visualization tools. It has the po-
tential to become a useful toolkit for researchers in meta-
learning.

4. Meta-visualization

The main objective of this work is to analyze the evolution
of the weights of the neural network. Since the claim of
MAML is that the weights of the model are a good meta-
initialization, a natural way to validate this statement is to
plot the loss landscape of the model NN for a variety of
tasks ¢ and compare the results.

We describe this idea more formally now. Suppose NN is
a neural network parametrized by weights # € R?, each
weight being a column vector. Suppose we initalize the
network with weights 6 and then train for n epochs, saving
the snapshots of the weights 64, ..., 8,, along the way. Let
us call the matrix

T :=[fo,...,00]7 (1)
the trajectory of the weights, which at every row has a
snapshot of the weights of the NN during training. Our
goal is to find an affine subspace V C RY, such that V is
isomorphic to the plane R, that would enable us to visualize
T efficiently, and be able to attach meaningful loss values
to the plotted region around our trajectory. To address our
goal we answer two questions. The first question we answer
is: What is the correct loss to visualize?

1https://github.com/facebookresearch/
higher

https://github.com/learnables/
learn2learn

*https://github.com/google-research/
meta—-dataset


https://github.com/facebookresearch/higher
https://github.com/facebookresearch/higher
https://github.com/learnables/learn2learn
https://github.com/learnables/learn2learn
https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset

Meta-Visualization: Investigating Rapid Learning and Feature Reuse

4.1. Loss motivation from the optimization objective

The standard join training, applied to few-shot learning,
optimizes the following objective

0* = arg ngin Etetasks [ft (9’ St)}’ (2)

where f; is the loss for task ¢ given the support S; (which
in this case coincides with the query Q;, meaning that there
is a single loop, i.e. no inner and outer loop distinction). In
contrast MAML optimizes the following objective

0* = arg HleinEtEtasks[ft(a - vat(97 St)7 Qt)], (3)

where for simplicity we show only one gradient step for
adaptation. Therefore, when we plot the loss landscape it
does not suffice to simply evaluate at a given query Q; from
a fixed task ¢, as one might naively follow the approach of
(Li et al., 2018), because the inductive bias of 6 is to be a
good initialization, not optimal weights for task ¢. Thus, we
have to adapt the weights on the support S; before evalu-
ating the loss on Q;. This observation necessitates a new
setting for visualization, which to our knowledge has not
been studied in the literature: visualization of meta-learning
optimization algorithms, which we dub meta-visualization.

In order to define meta-visualization rigorously, we answer
a second question: How to efficiently choose the affine
subspace VV'? We would want to capture the most of the vari-
ation of the trajectory T, and keep the distances between
the original and projected weights small. To address the for-
mer property, we use principle component analysis (PCA)
(Pearson, 1901; Li et al., 2018).

4.2. Principle Component Analysis

PCA is a good fit to our goal, since it attains dimensionality
reduction by capturing most of the variance of the data. We
perform the classical PCA algorithm on the matrix T to
obtain the top-k principal component vectors d1, . . ., dg. In
practice, we use the first two principal components §; and
02, which span a plane P given as follows

P = {0[151 + ad9 ‘ 1,09 € R} 4)

We would like to obtain the affine plane that reconstructs our
trajectory with the smallest reconstruction (mean squared)
error. Naturally, this means that we offset P by the center of
mass of the trajectory, which is 6 1= 1/(n + 1) 31" 0.
Thus the affine space becomes

V={0+w:we P}, (5)
as desired.

Now, let us denote the projection of §; onto V' by 0;. Let
C C V be acompact region such that §; € C for all 6; (such

H ——— o 0
adapt
(a) lift project (b)
V «——V V
grad

Figure 2. Visualizing the loss landscape of MAMLs requires adap-
tation and offers a measure of rapid learning. (a) Our approach:
lifting, adapting, projecting and directing for a given task ¢; (b) The
standard approach in (Li et al., 2018) that consist only of lifting
and projecting.

a region exists since we have a finite number of points). For
example, C can simply be the smallest rectangle in which
all the weights projections fit. We evaluate a test loss of the
network parametrized with weights on a grid of points in C'
and then plot the results.

4.3. Constructing vector fields

We demonstrate our proposition for meta-visualization on
figure 2 for any task ¢. In (a) we start from the principles
components d1, ..., and the center of mass 6 to liff to
from V to a point 6. Then we set § as a meta-initialization
for the model NN, and adapt it to ¢ on the support S; using
MAML’s inner loop proceduce. After this we can project
¢ back to V' and use the projection to evaluate the loss
on the query set Q. Finally, we can use the original point
and the adapted point to define the difference between the
two vectors. In this way in our plot we generate a vector
field where each vector at a point measures the vector of
adaptation that 6§ undergoes during the inner loop. In (b)
we compare our meta-visualization in (a) to the work by
(Li et al., 2018), which concerns only lifting from V. We
speculate that via observing the vector fields we might be
able to define a notion of rapid learning, and leave that for
future work.

5. Results

We begin our discussion with a simple toy task.

5.1. A simple toy study

In Figure 3 we present a simple proof of concept visual-
ization of how MAML is supposed to work, compared to
SGD. In this example we work with a neural network with
only 2 neurons. We observe that SGD training on the three
green tasks leaves the initialization at a place that is fur-
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Figure 3. SGD (left) and MAML (right) loss landscapes for a toy
task with a neural network with only two neurons. In green are
training points and in red are the test points. Loss landscape is for
one of the red points.

ther away from the minimum, compared to the “centroid”
meta-initialization that we get from MAML. In this case,
we clearly see that MAML yields a good initialization, and
this visualization we would like to probe for more realistic
settings.

We now continue in realistic settings and conduct the fol-
lowing set of studies: (i) varying the learning rate during
adaptation in meta-visualization; (ii) varying the number
of adaptation steps during adaptation in meta-visualization;
(iii) observing the loss landscape of MAML on Omniglot
and Quickdraw; (iv)) observing the loss landscape of SGD
on Omniglot and Quickdraw; (v) Holding the feature ex-
tractor F fixed and varying the head H only in MAML,; (vi)
Holding the head H fixed and varying the feature extrac-
tor F only in MAML. First we train MAML and SGD on
Omniglot and Quickdraw and report the results.

5.2. Training performance

Figure 4 addresses the training curves of our models, along
with their performance on the test split. The accuracy that
we plot is the accuracy on the query Q; after fine-tuning
on the support S;. We observe that MAML learns mean-
ingful meta-initializations that allow it yield high accuracy,
while SGD does not and thus essentially performs random
guessing. Moreover, we observe that Quickdraw is a more
challenging task than Omniglot, as expected from observing
Figure 1.

5.3. Varying the learning rate

We fix MAML and a particular task from Omniglot. We
present our results in Figure 5. We observe that decreasing
the learning rate from the default training learning rate (le-
1) increases the loss of the region, since the MAML adapts
too slowly in the inner loop.

5.4. Varying the number of adaptation steps

We use the same MAML and task from Omniglot as in the
previous subsection. We present our results in Figure 5. We

maml_omniglot

Accuracy
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Epoch — Train  — Test
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a0y 8 0=
2 8 & 8
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0 10 20 30 0 50
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sgd_omniglot

22-

Accuracy
§
3

5

0 10 20 30 a0 50
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sgd_quickdraw
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9
3

Figure 4. Training performance. We see that Quickdraw is a more
challenging task than Omniglot. We also see that SGD is simply
doing random guessing.

observe that the best loss landscape is for N = 5, which
is exactly the number of adaptation steps that we use for
the inner loop during training. In contrast, when there are
zero steps (and thus no vector fields, because of the lack
of adaptation) there the loss suggests that the model is es-
sentially doing random guessing. Moreover by observing
the drastic change in the loss landscape for N = 10, we
see that over-adapting on the support set does not help. We
conjecture that the model might begin over-fitting on the
support set and will study this in future work.
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Figure 5. Finding the best learning rate for meta-visualization
needs tuning. We see that here le-2 is the best choice, even though
the models has been trained with le-1 in the inner loop. Final point
labeled by cross. The last 20 points of the trajectory are plotted.

5.5. Loss landscapes for MAML and SGD

We present our results in Figure 7. We observe that MAML
always brings the outer loss to a low level, thus enabling
high accuracy (dark green). In contrast SDG fails to bring
the outer loss to a low level, thus it accuracy (light green)
suggests that SGD is performing random guessing. Note
that for each task there is a little variability both for the loss
and the accuracy.

0.1215

0.1212

0.1209

- 0.1206

- 0.1203

- 0.1200

- 0.1197

0.1194

0.1191

0.1188
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- 0.1428

- 0.1420

-0.1412

- 0.1404

0.1396

0.1388

0.1380

Figure 6. We see that adaptation is very important for meta-
visualization. ~Namely, at zero steps of adaptation, meta-
visualization of MAML is similar to that of SGD, suggesting
that MAML with zero adaptation steps is simply random guessing.
We see that the best performance is at N = 5 steps, which might
be due to the fact that the model has been trained with this setting.
Final point labeled by cross. The last 20 points of the trajectory
are plotted.

5.6. Fixed feature extractor and fixed head

We present our results in Figure 8 and Figure 9 respectively.
We observe uninformative plots which are hard to interpret,
possibly because we are plotting the situation only for a
single task. Moreover, fixing one component of the NN and
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Omniglot

Quickdraw

MAML
accuracy loss

SGD

Figure 7. Comparing the landscapes of MAML and SGD we see that MAML ends at a point that is reasonable across tasks while SGD
strikes at random and ends up doing random guessing (about 20% accuracy). Each new line is a new task for the respective dataset. Final
point labeled by cross. The full trajectory is plotted. Best viewed in color.

varying the other component might require rethinking, since
the weights of both components are coupled throughout
training. Therefore, we leave futher analysis in this direction
for future work.

6. Discussion

Note that all plots in the previous section exhibit sharp
edges. We conjecture that this phenomenon might be due
to the fact that we plot each loss landscape for a fixed task.
Instead, we argue that averaging our meta-visualizations
across a batch of tasks might smooth out the edges and yield
a more informative plot. We test the smoothing in the case of
varying the learning rate and report our results in Figure 10.
Indeed, we observe that the loss landscapes are smoother
and the trajectories keep on improving by following lower
loss. We leave the smoothing of rest of our plots in the
previous section for future work.

7. Conclusion and future work

In this work we presented meta-visualization. We observed
some properties of feature reuse and rapid learning. Imme-
diate future work suggests that we can vary the size of the
models, the size of the datasets, the models, test other meta
learning algorithms, and also test non-optimization based
methods, i.e. Matching Networks (Vinyals et al., 2016a),
etc.

Outlook. In this paper with meta-visualization we eval-
uate the outer loss (on the query set) after adapting on the
support set. As we saw, this gave us a good measure of the
success of MAML against SGD, but promising alternatives
for measuring feature reuse and rapid learning exist. For ex-
ample, supposet that we remove the head H from the model
and consider a nearest neighbor loss L; for task ¢ which
finds the nearest neighbor of the representation from the fea-
ture extractor F to prototypical examples’ representations.
A promising direction is to computer the inner loss for T’
tasks, given as follows

1 T
72 Li(6:50). ©)
t=1

If this loss is small then we might have evidence of feature
reuse, conditioned on low outer loss. Furthermore, if the
loss 6 is high, while the outer loss is low, then we might ob-
serve evidence of rapid learning. We would attempt testing
that conjecture on the collection of tasks (Triantafillou et al.,
2019). Finally, we will attempt to use the meta-visualization
tool to recognize similarity between tasks, which has the
potential to yield novel testbeds for meta-learning.
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